estimation of nitrate in hamedan-bahar plain groundwater using artificial neural network and the effect of data resolution on prediction accuracy

نویسندگان

حمید زارع ابیانه

دانشگاه بوعلی سینا ، استادیار گروه مهندسی آب دانشکدة کشاورزی مریم بیات ورکشی

دانشگاه بوعلی سینا ، دانش آموخته کارشناسی ارشد آبیاری و زهکشی دانشکدة کشاورزی سمیرا اخوان

دانشگاه بوعلی سینا، استادیار گروه مهندسی آب دانشکدة کشاورزی محمد محمدی

دانشگاه بوعلی سینا، کارشناس آبیاری

چکیده

information on nitrate in groundwater resources requires periodic measurements are accurate. despite the measure in some areas due to sensitive social and health community are not reported. therefore, be informed of the status of each area of water quality, modeling is essential. the purpose of this study was the application of artificial neural network method for estimating nitrate and compared with measured and estimated effectiveness of nitrate from the number and type of input data to neural network models. data from 53 groundwater wells hamedan - bahar plain, two groups of costly information and low cost, during the years 2003 to 2008 were collected. in costly information, of the 13 independent variables were used as chemical input neural network and in low-cost group of seven and eight variables separately for modeling nitrate was used. comparison of three structures indicates the high ability of neural network models in predicting the nitrate concentration. comparison of the average error from all three neural network models with t test and z statistics showed significant differences between the model results, there isn't. therefore, the input data in neural network group is justified. model input parameters include the depth of the static characteristics of geomorphology, deep wells, geographical and qualitative information of temperature, ph, ec of water samples was measured that was predicted, with nitrate concentrations of more than % 80 confidence that shows model performance is good in the aquifer of hamedan– bahar.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

the effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing

بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...

15 صفحه اول

the effect of task complexity on efl learners’ written task performance in terms of accuracy and complexity

هدف اصلی این تحقیق بررسی تاثیر افزایش میزان پیچیدگی تکالیف مکالمه محور بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 15 الی 18 سال درسطح pre-intermediate از طریق petو vhs تست به عنوان شرکت کنندگان در تحقیق انتخاب شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی دو تکلیف ساده و پیچیده را طی 2 جلسه انجام...

Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach

Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...

متن کامل

the washback effect of discretepoint vs. integrative tests on the retention of content in knowledge tests

در این پایان نامه تاثیر دو نوع تست جزیی نگر و کلی نگر بر به یادسپاری محتوا ارزیابی شده که نتایج نشان دهندهکارایی تستهای کلی نگر بیشتر از سایر آزمونها است

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
محیط شناسی

جلد ۳۷، شماره ۵۸، صفحات ۱۲۹-۱۴۰

کلمات کلیدی
information on nitrate in groundwater resources requires periodic measurements are accurate. despite the measure in some areas due to sensitive social and health community are not reported. therefore be informed of the status of each area of water quality modeling is essential. the purpose of this study was the application of artificial neural network method for estimating nitrate and compared with measured and estimated effectiveness of nitrate from the number and type of input data to neural network models. data from 53 groundwater wells hamedan bahar plain two groups of costly information and low cost during the years 2003 to 2008 were collected. in costly information of the 13 independent variables were used as chemical input neural network and in low cost group of seven and eight variables separately for modeling nitrate was used. comparison of three structures indicates the high ability of neural network models in predicting the nitrate concentration. comparison of the average error from all three neural network models with t test and z statistics showed significant differences between the model results there isn't. therefore the input data in neural network group is justified. model input parameters include the depth of the static characteristics of geomorphology deep wells geographical and qualitative information of temperature ph ec of water samples was measured that was predicted with nitrate concentrations of more than % 80 confidence that shows model performance is good in the aquifer of hamedan– bahar.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023